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Abstract. Twist-3 distribution amplitudes of the pion and kaon are studied in this paper. We calculate
the first several moments for the twist-3 distribution amplitudes (φπ

p,σ and φK
p,σ) of the pion and kaon

by applying the QCD sum rules. Our results show that (i) the first three moments of φK
p and the first

two moments of φπ
p and φπ,K

σ of the pion and kaon can be obtained with 30% uncertainty; (ii) the fourth
moment of the φπ

p and the second moment of the φK
σ can be obtained when the uncertainty are relaxed

to 35%; (iii) the fourth moment of the φπ
σ can be obtained only when the uncertainty are relaxed to 40%;

(iv) we have mp
0π = 1.10 ± 0.08 GeV and mp

0K = 1.25 ± 0.15 GeV after including the αs-corrections to the
perturbative part. These moments will be helpful for constructing the twist-3 wave functions of the pion
and kaon.

PACS. 13.20.He, 11.55.Hx

1 Introduction

Hadronic distribution amplitudes, which involve non-
perturbative information, are the important ingredients
when applying QCD to hard exclusive processes via
the factorization theorem. These distribution amplitudes
are process-independent and should be determined by
the hadronic dynamics. They satisfy the renormalization
group equation and have asymptotic solutions as Q2 →∞.

From the counting rule, the twist-2 distribution ampli-
tude makes the leading contribution and the contribution
from the higher-twist distribution amplitude is suppressed
by a factor 1/Q2 in the large momentum transfer regions.
However as one wants to explain the present experimental
data, the non-leading contributions should be taken into
account. The non-leading contributions include higher-
order corrections, higher-twist and higher Fock state con-
tributions et cetera. Therefore one has to study the twist-2
and higher-twist distribution amplitudes as universal non-
perturbative inputs for the exclusive processes.

Distribution amplitudes can be obtained from the
hadronic wave functions by integrating the transverse mo-
menta of the quarks in the hadrons. For example, the pi-
onic distribution amplitudes of the lowest Fock state are
defined by
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〈
0

∣∣d̄α(z) [z,−z] uβ(−z)
∣∣ π(q)

〉
= − i

8
fπ

∫ 1

−1
dξ eiξ(z·q)

× { �qγ5φπ(ξ) + mp
0πγ5φ

π
p (ξ)

+
2
3
mσ

0πσµνγ5q
µzνφπ

σ(ξ)
}

βα

+ . . . (1)

where σµν = i
2 (γµγν−γνγµ), fπ is the pion decay constant

and

[z,−z] = exp
{

ig
∫ z

−z

dxµAµ

}
is the Wilson line inserted to preserve gauge invariance of
the distribution amplitudes. The φπ(ξ) , φπ

p (ξ) and φπ
σ(ξ)

in (1) are the twist-2 and two twist-3 (non-leading) dis-
tribution amplitudes respectively. For the K meson, the
definition is similar except for the d quark being replaced
by the s quark and mp,σ

0π replaced by mp,σ
0K .

To isolate the light-cone twist-3 distribution ampli-
tudes φπ

p and φπ
σ of the pion, one can contract (1) with

the gamma matrices γ5 and σµνγ5 respectively,〈
0

∣∣d̄(z)iγ5 [z,−z] u(−z)
∣∣ π+(q)

〉
= mp

0πfπ
1
2

∫ 1

−1
dξ φπ

p (ξ)eiξ(z·q) + · · · (2)
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and 〈
0

∣∣d̄(z)σµνγ5 [z,−z] u(−z)
∣∣ π+(q)

〉
=
−i mσ

0πfπ

3
(qµzν − qνzµ)

1
2

∫ 1

−1
dξ φπ

σ(ξ)eiξ(z·q)

+ · · · (3)

In a similar way, we can define two twist-3 distribution
amplitudes φK

p and φK
σ of the kaon in the following:〈

0 |s̄(z)iγ5 [z,−z] u(−z)|K+(q)
〉

= mp
0KfK

1
2

∫ 1

−1
dζ φK

p (ζ)eiζ(z·q) + · · · (4)

and〈
0 |s̄(z)σµνγ5 [z,−z] u(−z)|K+(q)

〉
=
−i mσ

0KfK

3
(qµzν − qνzµ)

1
2

∫ 1

−1
dζ φK

σ (ζ)eiζ(z·q)

+ · · · (5)

The dots in the above definitions refer to those higher-
twist distribution amplitudes. We do not consider their
influences in the following calculation.

In their pioneering work in [1,2], the authors pointed
out that the first several moments of the distribution am-
plitudes could be calculated in the QCD sum rules [3].
Those moments are helpful to construct a model for the
hadronic distribution amplitudes.

The parameters mp,σ
0π and mp,σ

0K introduced in the def-
inition are used to normalize the zeroth moments of their
corresponding distribution amplitudes. It is shown in this
paper that these parameters determined by the QCD sum
rules are smaller than those required by the equations of
motion (e.g., see [4,5]).

In this paper, we calculate the first three moments of
the twist-3 distribution amplitudes of π and K, defined in
(2)–(5), in the QCD sum rules. For the pion case, we had
calculated the moments of distribution amplitude φπ

p in a
previous paper [6]. However there were some mistakes in
estimating the contribution from the continuous spectrum
and the Borel windows which would severely influence the
values of the moments. Now we present the correct expres-
sions for the moments of φπ

p and re-analyze their numerical
results in this paper. Furthermore, it is well known that
axial currents in a correlator would couple to instantons
(see, for example, [7]). And this may cause some compli-
cations in the calculation and make the results unreliable.
We will not explore their influences in this paper.

This paper is organized as follows. In Sect. 2, we give
the sum rules of the moments of φπ

p and φπ
σ for the π

meson. The sum rules for the moments of φK
p and φK

σ of K
meson are given in Sect. 3. The SU(3) symmetry violation
has been taken into account. In Sect. 4, numerical analysis
of various moments is presented. The information of the 3-
particle twist-3 distribution amplitude obtained from the
2-particle distribution amplitudes are also discussed. The
last section is reserved for a summary and discussion.

2 QCD sum rules for the moments of φπ
p

and φπ
σ of the pion

In this section we apply the background field method in
QCD to calculate the moments [8–13]. Expanding (2) and
(3) around z2 = 0, we have〈

0
∣∣∣d̄(0)γ5

(
iz · ←→D

)n

u(0)
∣∣∣ π+(q)

〉
= −ifπmp

0π

〈
ξn
p

〉
(z · q)n (6)

and 〈
0

∣∣∣∣d̄(0)σµνγ5

(
iz · ←→D

)n+1
u(0)

∣∣∣∣ π+(q)
〉

= −n + 1
3

fπmσ
0π 〈ξn

σ 〉 (qµzν − qνzµ)(z · q)n (7)

respectively. The moments in (6) and (7) are defined by
the following expressions:

〈
ξn
p

〉
=

1
2

∫ 1

−1
ξnφπ

p (ξ)dξ, 〈ξn
σ 〉 =

1
2

∫ 1

−1
ξnφπ

σ(ξ)dξ. (8)

As usual, the SU(2) isospin symmetry can be taken as
(nearly) exact. It means that the distribution of longitu-
dinal momentum carried by the quarks (in the light-cone
framework) should be symmetric between u and d, i.e.,
odd moments of the distribution amplitudes φπ

p , φπ
σ should

be zero. So we consider only the even moments for the pion
case in the following.

In order to obtain the sum rules of the moments, we
introduce two corresponding correlation functions,

(z · q)2n I(2n,0)
p (q2)

≡ −i
∫

d4xeiq·x (9)

×
〈
0

∣∣∣T {
d̄(x)γ5(iz · ←→D )2nu(x), ū(0)γ5d(0)

}∣∣∣ 0
〉

and

−i(qµzν − qνzµ)(z · q)2n I(2n,0)
σ (q2)

≡ −i
∫

d4xeiq·x
〈
0

∣∣∣T {
d̄(x)σµνγ5(iz · ←→D )2n+1u(x),

ū(0)γ5d(0)}| 0〉 . (10)

In the deep Euclidean region (−q2 � 0), one can calculate
the Wilson coefficients in the operator product expansion
(OPE) for (9) and (10) perturbatively. The results with
power correction to dimension six and the αs-corrections
to lowest order are written as

I(2n,0)
p (q2)QCD

= − 1
2n + 1

3
8π2 q2 ln

−q2

µ2 −
1
8

〈
αs
π G2

〉
q2

− 2n− 1
2

(mu + md) 〈q̄q〉
q2
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+
16π
81

(16n2 + 4n + 21)
〈√αsq̄q〉2

q4 (11)

and

I(2n,0)
σ (q2)QCD

= − 1
2n + 3

3
8π2 q2 ln

−q2

µ2 −
1
24

〈
αs
π G2

〉
q2

− 2n + 1
2

(mu + md) 〈q̄q〉
q2

+
16π
81

(16n2 + 12n− 7)
〈√αsq̄q〉2

q4 . (12)

On the other hand, in the physical region, the correlation
functions (9) and (10) can be written in terms of their
hadronic spectrum representation (according to (6) and
(11), and (7) and (12) respectively),

Im I(2n,0)
p (q2)had

= πδ(q2 −m2
π)f2

π(mp
0π)2

〈
ξ2n
p

〉
+π

3
8π2

1
2n + 1

q2θ(q2 − sp
π) (13)

and

Im I(2n,0)
σ (q2)had

= πδ(q2 −m2
π)

2n + 1
3

f2
πmσ

0πmp
0π

〈
ξ2n
σ

〉
+ π

3
8π2

1
2n + 3

q2θ(q2 − sσ
π) . (14)

The correlation function in these two regions can be re-
lated by the dispersion relation,

1
π

∫
ds

Im I(s)had

s + Q2 = I(−Q2)QCD.

In order to improve its convergence, we apply the Borel
transformation,

1
π

1
M2

∫
ds e−s/M2

Im I(s)had = L̂M I(−Q2)QCD,(15)

where M is the Borel parameter. Substituting (11) and
(13) into (15) gives the sum rules for the moments of φπ

p :

〈
ξ2n
p

〉
(mp

0π)2 =
em2

π/M2
M4

f2
π

×
{

1
(2n + 1)

3
8π2

[
1−

(
1 +

sp
π

M2

)
e−sp

π/M2
]

+
1
8

〈
αs
π G2

〉
M4 +

2n− 1
2

(mu + md) 〈q̄q〉
M4

+
16π
81

(16n2 + 4n + 21)
〈√αsq̄q〉2

M6

}
. (16)

Similarly, substituting (12) and (14) into (15) gives the
sum rules for the moments of φπ

σ:

〈
ξ2n
σ

〉
mσ

0πmp
0π = 3

em2
π/M2

M4

f2
π

×
{

1
(2n + 1)(2n + 3)

3
8π2

[
1−

(
1 +

sσ
π

M2

)
e−sσ

π/M2
]

+
1
24

1
2n + 1

〈
αs
π G2

〉
M4 +

1
2

(mu + md) 〈q̄q〉
M4

+
16π
81

16n2 + 12n− 7
2n + 1

〈√αsq̄q〉2
M6

}
, (17)

where sp
π and sσ

π are the threshold values to be chosen
properly, and the zeroth moment has been normalized to
unity, i.e.,

〈
ξ0
p

〉
=

〈
ξ0
σ

〉
= 1.

3 QCD sum rules for the moments of φK
p

and φK
σ of the kaon

For the kaon, we should consider the difference between
s quark and u quark (i.e., the violation of the SU(3) fla-
vor symmetry). There is an asymmetry of the distribution
of the longitudinal momentum carried by s quark and u
quark in the light-cone framework. So the odd moments of
the distribution amplitudes for the K meson do not van-
ish. The violation effects of the SU(3) flavor symmetry
for leading-twist distribution amplitudes of K and/or K∗
meson were considered in [14]. So in calculating the odd
moments, we retain all the corrections to order m2

s.
Expanding (4) and (5) around z2 = 0, one obtains〈

0
∣∣∣s̄(0)γ5

(
iz · ←→D

)n

u(0)
∣∣∣ K+(q)

〉
= −ifKmp

0K

〈
ζn
p

〉
(z · q)n (18)

and 〈
0

∣∣∣s̄(0)σµνγ5(iz · ←→D )n+1u(0)
∣∣∣ K+(q)

〉
= −n + 1

3
fKmσ

0K 〈ζn
σ 〉 (qµzν − qνzµ)(z · q)n (19)

respectively, and the moments are defined by

〈
ζn
p

〉
=

1
2

∫ 1

−1
ζn φK

p (ζ)dζ ,

〈ζn
σ 〉 =

1
2

∫ 1

−1
ζn φK

σ (ζ)dζ. (20)

Similar to the pion case, the correlation functions for cal-
culating the moments of the kaon are defined as

(z · q)n I
(n,0)
Kp (q2)

≡ −i
∫

d4xeiq·x (21)

×
〈
0

∣∣∣T {
s̄(x)γ5(iz · ←→D )nu(x), ū(0)γ5s(0)

}∣∣∣ 0
〉

and

−i(qµzν − qνzµ)(z · q)n I
(n,0)
Kσ (q2)

≡ −i
∫

d4xeiq·x
〈
0

∣∣∣T {
s̄(x)σµνγ5(iz · ←→D )n+1u(x),
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ū(0)γ5s(0)}| 0〉 . (22)

As discussed in the previous section, the correlation func-
tions can be calculated perturbatively in the deep Eu-
clidean region, i.e., Q2 = −q2 � 0. Combined with (18)
and (19), we assume the hadronic spectrum representa-
tions of the above correlations as follows:

Im I
(n,0)
Kp (q2)had

= πδ(q2 −m2
K)f2

K(mp
0K)2

〈
ζn
p

〉
+ π

3
8π2

1
n + 1

q2θ(q2 − sp
K) (23)

and

Im I
(n,0)
Kσ (q2)had

= πδ(q2 −m2
K)

n + 1
3

f2
Kmσ

0Kmp
0K 〈ζn

σ 〉

+ π
3

8π2

1
n + 3

q2θ(q2 − sσ
K). (24)

Employing the dispersion relation and Borel transforma-
tion as done in the previous section, the sum rules for the
moments of φK

p can be expressed in the following:

〈
ζ2n
p

〉
(mp

0K)2 =
em2

K/M2
M4

f2
K

×
{

1
(2n + 1)

3
8π2

[
1−

(
1 +

sp
K

M2

)
e−sp

K/M2
]

+
1
8

〈
αs
π G2

〉
M4

+
[(2n + 1)ms − 2mu] 〈s̄s〉

2M4

+
[(2n + 1)mu − 2ms] 〈ūu〉

2M4

+
16π
81

(8n2 + 2n− 3)
αs

[
〈s̄s〉2 + 〈ūu〉2

]
M6

+
16π
3

αs 〈s̄s〉 〈ūu〉
M6

}
(25)

and 〈
ζ1
p

〉
(mp

0K)2 =
em2

K/M2
M4

f2
K

×
{
− 3

8π2

m2
s

M2

(
1− e−sp

K/M2
)

+
(ms −mu) [〈ūu〉+ 〈s̄s〉]

M4

+
m2

s

〈
αs
π G2

〉
4M6

+
4π
27

m2
s

M2

36 αs 〈ūu〉 〈s̄s〉 − 4 αs 〈ūu〉2
M6

}
. (26)

For the twist-3 amplitude φK
σ , we make a similar calcula-

tion according to the above procedure and the sum rules

for the moments of φK
σ become

〈
ζ2n
σ

〉
mp

0Kmσ
0K = 3

em2
K/M2

M4

f2
K

×
{

1
(2n + 1)(2n + 3)

3
8π2

[
1−

(
1 +

sσ
K

M2

)
e−sσ

K/M2
]

+
1

24(2n + 1)

〈
αs
π G2

〉
M4 +

ms 〈s̄s〉+ mu 〈ūu〉
2M4

+
16π
81

(4n + 1)
αs

[
〈s̄s〉2 + 〈ūu〉2

]
M6

− 16π
9(2n + 1)

αs 〈s̄s〉 〈ūu〉
M6

}
(27)

and

〈
ζ1
σ

〉
mp

0Kmσ
0K =

3
2

em2
K/M2

M4

f2
K

×
{
− 1

4π2

m2
s

M2

(
1− e−sσ

K/M2
)

+
ms 〈s̄s〉 −mu 〈ūu〉

M4

+
m2

s

〈
αs
π G2

〉
6M6

(
ln

M2

µ2 + 1− γE

)
− 1

3
msgs 〈s̄σGs〉

M6

+
32π
27

αs

[
〈s̄s〉2 − 〈ūu〉2

]
M6

 , (28)

where γE = 0.577 216 · · · is the Euler constant, sp
K and

sσ
K in the above equations are the threshold values to be

chosen properly, and the zeroth moments have been nor-
malized,

〈
ζ0
p

〉
=

〈
ζ0
σ

〉
= 1.

4 Numerical analysis

To analyze the sum rules (16), (17) and (25)–
(28) numerically, we take the input parameters as
usual: fK = 0.160 GeV, fπ = 0.133 GeV, ms =
0.156 GeV, mu = 0.005 GeV, md = 0.008 GeV, 〈ūu〉 =〈
d̄d

〉
= −(0.24 GeV)3, 〈s̄s〉 = 0.8 〈ūu〉, gs 〈s̄σGs〉 =

−0.00885 GeV5,
〈αs

π
GG

〉
= 0.012 GeV4, αs(1 GeV) =

0.5. The renormalization scale µ = M is assumed in the
following analysis.

As to the threshold values sp,σ
π,K in the sum rules, they

can be taken to the mass square of the first excited states
in the corresponding channel. Although the windows be-
come broader when the sp,σ

π,K are larger, the threshold val-
ues cannot exceed the first excited states. In order to get
maximum stability of the sum rules, they are taken as the
mass square of the first excited states, i.e.,

sp,σ
π = (1.3 GeV)2, sp,σ

K = (1.46 GeV)2,

where the first excited state is π′(1300) for the pion case,
and that for the kaon case is K(1460) [15].
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4.1 Determination of the normalization constants

For each distribution amplitude, we introduce a corre-
sponding parameter (e.g., mp

0π for φπ
p ). These parameters

are normalization constants which normalize the zeroth
moments to one. Their values can be determined from the
sum rules (16), (17), (25) and (27) with n = 0. Take mp

0π
as an example. To identify a Borel window (M2) for the
sum rule of mp

0π, one requires that the continuum con-
tribution is less than 30% and the dimension-six conden-
sate contribution is less than 10%. This requirement leads
to a window M2 ∈ (0.64, 0.75) GeV2 and one can find
mp

0π = 0.96 ± 0.03 GeV within this window. The results
are plotted in Figs. 1a,b for mp

0π.
The same procedure can be applied to get the other

parameters mσ
0π, mp,σ

0K , and the numerical results are listed
in Table 1. The continuum contributions to the sum rules
are required to be less than 30% and the dimension-six
contribution is required to be less than 16% for mσ

0π, and
10% for mp

0K and mσ
0K . It should be pointed out that

when the αs-correction to the perturbative part of the
sum rule for mp

0π, mp
0K are taken into account [9], their

values will be increased by 15–20%. For example, mp
0π =

1.10± 0.08 GeV and mp
0K = 1.25± 0.15 GeV.

One can see from the above that mσ
0π is smaller than

mp
0π about 30%. The main reason is the opposite signs of

0.66 0.68 0.7 0.72 0.74
M2�GeV2�

0.05

0.1

0.15

0.2

0.25

0.3

a

0.66 0.68 0.7 0.72 0.74
M2�GeV2�

0.85

0.9

0.95

1

1.05

b

Fig. 1. a The window for the normalization constant mp
0π

without αs-correction in the perturbative part in the sum rule.
The dashed line is the ratio of the dimension-six condensate
contribution to the total sum rule (n = 0) and the solid line is
the ratio of the continuum contribution to the total sum rule
(n = 0). b The corresponding values of mp

0π within the window

Table 1. The normalization constants m0 and the correspond-
ing Borel windows for the distribution amplitudes φπ

p,σ and φK
p,σ

without αs-correction in the perturbative parts in the sum rules

φπ
p φπ

σ φK
p φK

σ

m0 (GeV) 0.96 ± 0.03 0.67 ± 0.06 1.06 ± 0.09 0.71 ± 0.09
M2 (GeV2) 0.64–0.75 0.60–0.68 0.58–0.93 0.66–0.83

the dimension-six condensate terms in (16) and (17). For
the kaon case, the approximate 30% difference between
mσ

0K and mp
0K is due to the same reason (see (25) and

(27)).
It was shown that the normalization constants for the

twist-3 distribution amplitudes can be obtained from the
equations of motion [4]. So at this point, we would like to
compare our results with those obtained by the equations
of motion and judge upon the accuracy of the sum rules
presented above. From the equations of motion follows the
normalization constant mp

0π → µπ = m2
π/m̄ for φπ

p and
mσ

0π → µ̃π = µπ − m̄ for φπ
σ, where m̄ = mu + md. Fur-

thermore, the Q2 dependence of the quark mass m̄ can
be written as m̄(Q2) = [ln(µ2/Λ2)/ ln(Q2/Λ2)]4/9 m̄(µ2)
which can be obtained from the anomalous dimension of
the quark mass. Thus we find µπ(1 GeV2) ≈ 1.48 GeV and
µ̃π(1 GeV2) ≈ 1.47 GeV as we take m̄(4 GeV2) = 11 MeV.
For the kaon case, we take (mu+ms)(4 GeV2) = 140 MeV.
From the equation of motion we have µK(1 GeV2) =
m2

K/(mu + ms)(1 GeV2) ≈ 1.45 GeV and (µK − (ms +
mu))(1 GeV2) ≈ 1.28 GeV. In the above statement, the
QCD scale Λ = 250 MeV is assumed and nf = 3 flavors
are taken into account. One can see that the deviation of
mp

0π from µπ is about 26% and the deviation of mp
0K from

µK is less than 15% (αs-corrections to the perturbative
parts are included).

If the αs-correction to the perturbative part is 15–20%
and these corrections make the normalization constants
increasing, one may expect that the deviation of mσ

0π from
µ̃π is about 45% and the deviation of mσ

0K from µK −
(mu + ms) is about 33%.

4.2 Determination of the second moment
of φπ

p,σ and the odd moment of φK
p,σ

Let us consider the second moments of φπ
p and φπ

σ for
the pion. Just as the determination of the normalization
constants in the above paragraphs, one should find a win-
dow for each moment in the corresponding sum rule. The
Borel windows in Table 2 are obtained under the require-
ment that both the contributions from continuous states
and the dimension-six condensate are less than 30%. As
an example, we plot the results for the moment

〈
ξ2
p

〉
in

Figs. 2a,b and the numerical results are listed in Table 2.
Now we turn to the determination of the first moments

of φK
p,σ. The contributions from the dimension-6 conden-

sate and the continuous states of 〈ζ1
p〉 and 〈ζ1

σ〉 are plotted
in Fig. 3. For

〈
ζ1
p

〉
, the dimension-six contribution is less
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Table 2. Second moments of φπ
p,σ, odd moments of φK

p,σ and their
corresponding Borel windows

〈
ξ2

p

〉 〈
ξ2

σ

〉 〈
ζ1

p

〉 〈
ζ1

σ

〉

0.52 ± 0.03 0.34 ± 0.03 −0.10 ± 0.03 −0.13 ± 0.04
M2 (GeV2) 0.72–0.88 0.71–0.84 0.80–1.85 0.77–1.53

0.725 0.75 0.775 0.8 0.825 0.85 0.875
M2�GeV2�

0.2

0.22

0.24

0.26

0.28

0.3

a

0.725 0.75 0.775 0.8 0.825 0.85 0.875
M2�GeV2�

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

b

Fig. 2. a the window for the moment 〈ξ2
p〉, the dashed and the

solid line indicate the ratio of the contributions of dimension-6
condensates and continuous states in the total sum rule respec-
tively; b the moment 〈ξ2

p〉 within the Borel window

than 1% and the continuum contribution is less than 10%.
For

〈
ζ1
σ

〉
, the contributions of dimension-six condensate

and continuous states are less than 10%.
With these windows we can get the values of the cor-

responding moments. These results are listed in Table 2.

4.3 Determination of the fourth moment of φπ
p,σ

and the second moment of φK
p,σ

Now we consider the second moment
〈
ζ2
p

〉
of φK

p for
the K meson. The Borel window for

〈
ζ2
p

〉
is shown in

Fig. 4a when the contributions of continuous states and
the dimension-six condensate are less than 30%. The nu-
merical results are listed in Table 3.

However, for the fourth (n = 2) moments of φπ
p , φπ

σ

of the π meson, we cannot find the Borel windows when
the contributions of continuous states and the dimension-
six condensate are required to be less than 30%. For the

1 1.2 1.4 1.6 1.8
M2�GeV2�

0.02

0.04

0.06

0.08

0.1

a 〈ζ1
p〉

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
M2�GeV2�

0.02

0.04

0.06

0.08

0.1

0.12

b 〈ζ1
σ〉

Fig. 3. The windows for 〈ζ1
p〉 and 〈ζ1

σ〉. The dashed and the
solid lines indicate the ratios of the contributions of dimension-
6 condensates and the continuous states in the corresponding
total sum rule respectively

second (n = 1) moment of φK
σ of the K meson, we find

that the Borel window is very narrow when the contribu-
tions of continuous states and the dimension-six conden-
sate are required to be less than 30%. As we relax the re-
quirement that the contributions of continuous states and
the dimension-six condensate are less than 35%, the Borel
windows for 〈ζ2

σ〉 and 〈ξ4
p〉 can be found. For 〈ξ4

σ〉, one can
find the Borel window only when the contributions of con-
tinuous states and the dimension-six condensate are less
than 40%. The above windows are shown in Figs. 4b–d.

The values of these moments within their correspond-
ing windows are listed in Table 3.

4.4 From 2-particle distribution amplitudes
to 3-particle distribution amplitude

There are three twist-3 distribution amplitudes φπ
p , φπ

σ and
φ3π for the π meson. As shown in [4], they are not inde-
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0.7 0.75 0.8 0.85 0.9 0.95 1
M2�GeV2�

0.125

0.15

0.175

0.2

0.225

0.25

0.275

a 〈ζ2
p〉

0.79 0.8 0.81 0.82 0.83 0.84 0.85
M2�GeV2�

0.28

0.3

0.32

0.34

b 〈ζ2
σ〉

1.06 1.08 1.1 1.12 1.14
M2�GeV2�

0.31

0.32

0.33

0.34

c 〈ξ4
p〉

1.1 1.12 1.14 1.16 1.18 1.2 1.22
M2�GeV2�

0.34

0.36

0.38

0.4

d 〈ξ4
σ〉

Fig. 4. The windows for the second moments of φK
p , φK

σ and the fourth moments of φπ
p , φπ

σ . The dashed and the solid lines
indicate the ratios of the contributions of dimension-6 condensates and the continuous states in the corresponding total sum
rule respectively

Table 3. Fourth moments of φπ
p,σ and second moments of φK

p,σ. But
note that the values of 〈ξ4

p〉 and 〈ζ2
σ〉 given in this table are under the

requirement of 35% uncertainty and 〈ξ4
σ〉 is under the requirement of

40% uncertainty
〈
ξ4

p

〉 〈
ξ4

σ

〉 〈
ζ2

p

〉 〈
ζ2

σ

〉

0.44 ± 0.01 0.20 ± 0.01 0.43 ± 0.04 0.173 ± 0.002
M2 (GeV2) 1.06–1.14 1.08–1.22 0.67–1.00 0.78–0.85

pendent. By employing the equations of motion in QCD,
one can obtain some relations between them. For the pion,
the relations between the twist-3 distribution amplitudes
of the lowest Fock state and the 3-particle one are given
in [4]. They obtained two distribution amplitudes of the
lowest Fock state φπ

p,σ from the 3-particle distribution am-
plitude φ3π which was given by a direct calculation in the
QCD sum rule method [16]. On the contrary, we use the
relations from the equations of motion to see what we can
say about the 3-particle distribution amplitudes with the
above results of the distribution amplitudes of the low-
est Fock state as input. The results can also be compared
with those obtained by the QCD sum rule directly [16].
The cross checks in these calculations are helpful to judge
upon the accuracy of the sum rules.

First, let us discuss the pion case. The 3-particle dis-
tribution amplitude of the π meson can be defined as

〈0|d̄(x)σµνγ5gGαβ(−vx)u(−x)|π+(q)〉

= if3π

[
qα(qµδνβ − qνδµβ)− (α↔ β)

]
×

∫
Dαi eiqx(−α1+α2+vα3)φ3π(αi), (29)

where Dαi = dα1dα2dα3δ(α1 +α2 +α3− 1). There is the
system of recurrence relations for the moments 〈ξn

p 〉 and
〈ξn

σ 〉 [4] :

〈ξn
p 〉 = δn0 +

n− 1
n + 1

〈ξn−2
p 〉

+ 2Rp(n− 1)
∫ 1

−1
dv〈〈(α2 − α1 + vα3)n−2〉〉

− 2Rp
(n− 1)(n− 2)

n + 1

×
∫ 1

−1
dv v〈〈(α2 − α1 + vα3)n−3〉〉, (30)

〈ξn
σ 〉 = δn0 +

n− 1
n + 3

〈ξn−2
σ 〉 (31)
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+ 6Rσ
n− 1
n + 3

∫ 1

−1
dv〈〈(α2 − α1 + vα3)n−2〉〉

− 6Rσ
n

n + 3

∫ 1

−1
dv v〈〈(α2 − α1 + vα3)n−1〉〉,

where 〈〈(α2 − α1 + vα3)n〉〉 =
∫ Dαi φ3π(αi) (α2 − α1 +

vα3)n defines the moments of the 3-particle distribution
amplitude. Instead of taking Rp = Rσ = R as in [4], we
introduce them separately,

Rp =
1

mp
0π

f3π

fπ
and Rσ =

1
mσ

0π

f3π

fπ
.

Now, we take second moments into account. The above
relation can be reduced to

〈ξ2
σ〉 =

1
5
〈ξ0

σ〉+
12
5

Rσ − 8
5
Rσ〈〈α3〉〉

and

〈ξ2
p〉 =

1
3
〈ξ0

p〉+ 4Rp,

which gives, from Tables 1 and 2,

〈〈α3〉〉 = (0.13, 0.27) , f3π = (0.0049, 0.0067) GeV2.(32)

At this point, we compare the moment 〈〈α3〉〉 and f3π with
those calculated directly by the sum rule method in [16]:
〈〈α3〉〉 = (0.06, 0.22), f3π ≈ 0.0035 GeV2. One can see that
the results from the two approaches are compatible with
each other to the order of magnitude.

From the analysis in previous section, we have shown
that the fourth moments 〈ξ4

p〉 and 〈ξ4
σ〉 cannot be obtained

in a reliable way, so we do not use them to give the other
moments, i.e., 〈〈α2

1〉〉 and 〈〈α1α2〉〉, etc.
Now we turn to the K meson case. Similar to the pionic

case, one can define a 3-particle distribution amplitude:

〈0|s̄(x)σµνγ5gGαβ(−vx)u(−x)|K+(q)〉
= if3K [qα(qµδνβ − qνδµβ)− (α↔ β)]

×
∫
Dαi eiqx(−α1+α2+vα3)φ3K(αi). (33)

Following [4], a similar recurrence relation can be ob-
tained. As the first and second moments of φK

p,σ are taken
into account, the recurrence relation can be truncated to
three equations,

〈
ζ1
σ

〉
=

3
4

R′
σ

R′
p

〈
ζ1
p

〉
, (34)

〈
ζ2
σ

〉
=

3
5

R′
p

R′
σ

〈
ζ2
p

〉− 8
15

R′
p〈〈α3〉〉K , (35)

〈
ζ2
p

〉
=

1
3

R′
p

R′
σ

〈
ζ0
σ

〉
+ 4R′

p, (36)

where R′
p,σ = f3K/(fKmp,σ

0K ), and the primes on the R and
the subscript K indicate that the quantities are related to
the K meson. From Table 1, we have R′

σ/R′
p ≈ 1.06/0.71,

so (34) is a direct constraint of the two first moments.
Our calculation (see Table 2) shows that the left hand side
of (34) is about −0.13 and the right hand side is about
−0.11. It can be seen that this equation is approximately
fufilled. Solving the last two equations, (35) and (36), we
can obtain f3K and 〈〈α3〉〉K :

f3K = (0.0071, 0.0105) GeV2,

〈〈α3〉〉K = (5.01, 5.37). (37)

To determine more moments of the 3-particle distribu-
tion amplitude, we have to include higher moments of the
2-particle distribution amplitudes. However, one cannot
guarantee the convergence of the operator expansion for
bigger n.

5 Summary and discussion

In this paper we calculate the first three moments of the
twist-3 distribution amplitudes φπ

p,σ and φK
p,σ by using the

QCD sum rules. It has been shown that the first three mo-
ments of φK

p and the first two moments of φπ
p and φπ,K

σ of
the pion and kaon can be obtained with 30% uncertainty.
The fourth moments

〈
ξ4
p,σ

〉
of φπ

p,σ and the second moment〈
ζ2
σ

〉
of φK

σ can be obtained under 35%–40% uncertainty.
When the αs-corrections (we take them from [9]) to the
perturbative part of mp

0K , mp
0π are included, we find that

the values of mp
0π and mp

0K are increased (and the cor-
responding Borel windows become a little narrower) to
mp

0K = 1.25 ± 0.15 GeV and mp
0π = 1.10 ± 0.08 GeV. It

may be expected that the αs-corrections to the perturba-
tive parts in the sum rules for mσ

0K and mσ
0π will be about

15–20%.
As to the normalization constants mp,σ

0π and mp,σ
0K , our

calculated results show that they are smaller than the val-
ues which are given by the equations of motion and at
the same time, the calculated mσ

0π,K are smaller than the
corresponding mp

0π,K . These deviations can be traced to
the non-perturbative condensate effects (see the sum rules
(16), (17), (25) and (27) for the normalization constants),
in particular, the dimension-six condensate terms in oppo-
site sign lead to about 30% difference between these nor-
malization constants. On the other hand, from the sum
rules, one can see that the contributions from the contin-
uous state grow too fast, which prevents us from taking
M2 to be larger values (larger M2 will lead to bigger val-
ues of the normalization constants), and then the window
for the sigma sum rules (mσ

0π,K) are much narrower than
the non-sigma sum rules (mp

0π,K). So we think the smaller
values of mσ

0π,K may be related to our approximation in
the hadronic spectrum representation.

Furthermore, we calculate the moments of the quark–
antiquark–gluon distribution amplitude from the numer-
ical results on the distribution amplitudes of the lowest
Fock state by applying the exact equations of motion and
compare our results with those from [16]. The comparison
shows that they are compatible with each other to the
order of magnitude. It is helpful to improve the accuracy
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of the QCD sum rule approach for getting more precise
information on the twist-3 distribution amplitudes.

These moments can provide several constraints upon
the twist-3 distribution amplitudes. These constraints will
be helpful for building the model of the distribution am-
plitude. For example, [17] suggests a model for the twist-3
wave function of the pion based on the QCD sum rule cal-
culation to get a more realistic contribution to the pion
form factor. Here we discuss the distribution amplitude
φK

p of the kaon (since the first three moments can be
obtained reliably). As usual, we expand the distribution
amplitudes in Gegenbauer’s polynomials and use the mo-
ments to determine their first few coefficients in a trun-
cated form: φK

p (ζ) =
∑2

n=0 C
1/2
n (ζ)an. From the three

moments of φK
p (see Tables 2 and 3), we have the twist-3

distribution amplitude approximately,

φK
p (ζ) = 1− 0.30 C

1/2
1 (ζ) + 0.73 C

1/2
2 (ζ), (38)

which is asymmetric since the broken effects of SU(3)f

symmetry are taken into account.
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